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Outline

• Technologies used for prototypes
• Examples

• Integration of AG and Grid resources
• Chromium display technologies
• Grid-aware visualization applications

• Steps towards Grid-enabled AG 
Visualization applications
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Technologies
• Development

• Python
• Chromium
• MPI (MPICH and MPICHG2)
• OpenGL
• VTK
• Globus

• Clients
• AG Venue Client
• OpenMASH Vic (h.261)

• Communication
• Multicast
• XMLRPC
• SOAP / WSDL
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Extensions of Chromium to AG
• Application: Provide 

high-resolution output 
for existing applications 
over the Access Grid, 
with a single user 
interacting with the 
application.
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Advantages
• Can be used with existing applications unmodified, even 

closed-source applications, provided OpenGL is used for 
display

• Distributed graphics via VIC provide uniform output to all 
participants

• Graphical output is sent using standard Access Grid 
streaming video mechanisms, allowing for recording via 
Voyager, etc.

• High-resolution output (essentially arbitrary, limited by 
computing resources) using multiple tiled streams

• Cluster used for rendering
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AG and Grid Application Integration
• Application: Provide high-resolution, distributed, interactive 

access to a reduced dataset for exploration and selection of 
parameters used to submit full dataset resolution visualization 
job requests to an automated back-end system.
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Advantages
• Reduced dataset in distributed front-end allows for 

manipulation of very large datasets, in a distributed 
setting, without losing interactivity

• Customized client allows for wide range of dataset 
interactions

• Many hybrid compute models possible for full-dataset 
‘end product’ visualization

• Many users can simultaneously interact with the data to 
produce a desirable view before full-dataset jobs are 
submitted for processing

• Makes use of Grid Technologies, allowing for easier 
integration with AGTk 2.x
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Disadvantages

• Specialized client required for 
interaction

• Large, complex system with many 
dependencies

• Requires custom coded applications and 
clients
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Reduced-data Visualization Application
(Specialized VTK Interactor)
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Visualization Interaction Client
• Uses Python to produce a rich 

client UI
• Uses XMLRPC to communicate 

with the Distributed reduced-
data visualization application

• Regularly updates itself from 
visualization app state, 
allowing for many parties to 
simultaneously interact
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Back-end Processing Engine
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AG Integration
• Grid-enabled nature of AGTk 2.x allows for 

remote invocation of various components
• Personal credentials, used for AG 

authentication/security, also used for job 
management in Globus environment

• (Prototype) Verified above capabilities by 
spawning a complete job (all three 
components) from a single, simplified user 
interface
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Steps Towards Embedded AG Application

• Application: Provide a customized client for on-
demand, with minimal dependencies.
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Advantages

• User in an Access Grid session need not 
have client prior to use

• Common set of minimal dependencies can 
provide support for a wide range of clients

• Client version skew is minimized by 
providing a fresh, most-recent copy of the 
client each time it is used
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Disadvantages

• Requires pre-installed minimal client 
distribution component

• Requires common dependencies to be 
pre-installed (such as Python, Tkinter, 
etc.)

• Requires custom coded applications and 
clients
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Shared Image Viewer
• Application: Provide distributed, shared image 

viewing capabilities utilizing the AGTk 2.0 
Infrastructure.
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Advantages
• Participants in a collaboration can view 

arbitrary image data with venue-based 
synchronized updates

• Image display can be optimized for 
different physical display systems

• Proper local application is used to render 
the images based on the platform of each 
user
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Application Model
• Join the Shared Image Application Venue 

component
• Pick a Display Service to display to (if multiple 

Display Services are available, offer choice to the 
user)

• Get any currently displayed image from the 
saved state

• Wait for events requiring an update of the 
viewed image
• If locally requested, broadcast the event and update 

the shared state
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Application Implementation
• Implemented as a set of Python classes
• Makes extensive use of utility functions and common 

dependencies provided by the Access Grid Toolkit
• PyGlobus wrappers
• SOAP wrappers
• AG Service abstractions
• wxPython used for display

• Entire source is 293 lines, including comments and 
white-space

• Written with minimal knowledge of Access Grid Toolkit 
internals, and no knowledge of SOAP / WSDL

• Fully secure, Grid-enabled, and integrated with Access 
Grid Toolkit 2.x
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Shared Image Viewer
Shared App (Venue Communications)

class SharedImageViewer( wxApp ):
def __init__( self, venueUrl, profile, 

nodeServiceURL="https://localhost:11000/NodeService" ):
… code deleted …

self.venueProxy = Client.Handle(venueUrl).GetProxy()
self.nodeServiceProxy = Client.Handle(nodeServiceURL).GetProxy();
self.privateId = self.venueProxy.Join(profile)
# Retrieve the channel id
(self.channelId, eventServiceLocation ) = 
self.venueProxy.GetDataChannel(self.privateId)
# Retrieve list of node services
serviceList=self.nodeServiceProxy.GetServices()
# Parse service list, remove all non-display services
self.displayServices=[]
for service in serviceList:

for capability in service.capabilities:
if capability.role=="consumer" and capability.type=="display":                    

service.capabilities=Client.Handle(service.uri).GetProxy().GetCapabilities();
self.displayServices.append(service); 

# Subscribe to the event channel
self.eventClient = EventClient.EventClient(eventServiceLocation, 
self.channelId)
self.eventClient.start()
self.eventClient.Send(Events.ConnectEvent(self.channelId))
# Register the 'view' event callback
# The callback function is invoked with one argument, the data from the 
call.
self.eventClient.RegisterCallback("view", self.ViewCallback )
# Create View status panel

… code deleted …
self.viewer=Viewer(self.frame,-
1,self.targetSurface,self.displaySize);

… code deleted …
# Browse to the current url, if exists

currentImage = self.venueProxy.GetData(self.privateId, 
"image")
if len(currentImage) > 0:

self.viewer.display(currentImage)
… code deleted …

def newImage(self,data):
# Send the event
self.eventClient.Send(Events.Event("view", 
self.channelId, ( self.profile.publicId, data ) ))
# Store the URL in the app object in the venue
self.venueProxy.SetData(self.privateId, "image", data)

def ViewCallback(self, data):
# Determine if the sender of the event is this 
component or not.
(senderId, image) = data
if senderId == self.profile.publicId:

print "Ignoring %s from myself" % (image)
else:

print "Displaying ", image
self.viewer.display(image)



Retreat 2003

Shared Image Viewer
Viewer (locally displays the image)

class Viewer(wxPanel):
def __init__(self, parent, id, displayContact, displaySize, frame = None):

… code deleted …
def display(self, viewURL):
… code deleted …

try:
if viewURL.startswith("https"):

DataStore.GSIHTTPDownloadFile(viewURL, tfilepath, None, None)
else:

my_identity = GetDefaultIdentityDN()
DataStore.HTTPDownloadFile(my_identity, viewURL, tfilepath, None, None)

except DataStore.DownloadFailed, e:
wxCallAfter(wxLogError, "Got exception on download")

if self.displayContact.startswith("Win32"):
os.system("start %s"%(tfilepath))

else:
import posix
if self.pid_set:

posix.kill(self.pid_set,9)
self.pid_set=0

self.pid_set=posix.fork()
if self.pid_set:

return
else:

posix.system("display -display %s %s &"%("localhost:"+self.displayContact[6:].split(":")[-1],tfilepath))
posix._exit(0)
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Future

• More AG functionality
• More applications like the Shared Image 

Viewer
• Integration of complex visualization 

applications with the AG
• Services implemented using Grid 

standards, scoped within Virtual Venues 
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Questions?
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Contact Information
Questions or Comments regarding any of the content in 

this presentation may be directed to:

Justin Binns
Futures Laboratory / Argonne National Laboratory
binns@mcs.anl.gov


